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We rigorously prove that the probability P~ that the origin of  a d-dimensional 
lattice belongs to a cluster of  exactly n sites satisfies P ,  > exp ( -~n!  a- ~)/d) when- 
ever percolation occurs. This holds for the usual (noninteracting) percolation 
models for any concentration p > Pc, as well as for the equilibrium states of  lattice 
spin systems with quite, general interactions. Such a lower bound applies also if 
no percolation occurs, but if it appears in some other phase of  the system. 

KEY W O  R DS : Percolat ion;  Gibbs states; cluster size distr ibut ion ; nucleat ion ; 
stochast ic geometry. 

1. I N T R O D U C T I O N  

1.1. Foreword  

Percolation phenomena have recently been receiving an increasing amount of 
attention among physicists and mathematicians. Percolation has been used 
to describe a diverse collection of phenomena, including the percolation of a 
liquid through a porous medium, the sol-gel transition for polymers, and the 
magnetization of quenched ferromagnets. Definitions of various percolation 
models, their applications, and a review of recent results are given in Ref. 1. 

Most often, independent percolation models are considered. More 
recently, interacting percolation problems have also been studied for the 
theory of nucleation ~2) and for the theory of polymers. (3~ It has also been 
recognized that the understanding of the stochastic geometry of the clusters 
may give other insights into the properties of phase transitions. ~4-6) 

The object of our study is the size distribution of finite clusters, which 
exhibits different asymptotic behavior in various regions of the parameter 
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space. The lower bound which we prove depends mainly on the occurrence 
of percolation. As it applies equally well to systems with rather general 
interactions, we shall provide the proof  in such a context. 

1.2. Descript ion of the Problem 

The systems we consider are described by spin variables ax which are 
located at the sites x of the cubic lattice Z a, d >/2, and take the values _+ 1. 
Alternatively, in lattice gas language one refers to the occupied or empty sites, 
which correspond to the two values of the spin. 

The spins form a collection of  random variables which for the usual 
(noninteracting) percolation model are independently distributed. However, 
one may also consider distributions which correspond to the thermodynamic 
equilibrium of an interacting spin system. An example of an interaction is 
given by the Hamiltonian function 

~IA(~) = - h  ~ Ox- Y~ J(x-y),~% (1.1) 
x ~ A  {x ,y}  c~ A 4- ~ 

for spins in a region A c Z a. For finite systems, the probability of the 
configuration a is given by PA(a)= Z~ ~ exp[--fiHA(Cr)], where fi is the 
reciprocal temperature and Z A the appropriate normalization factor. If 

r + ~  a 

then it is well known that the system has a well-behaved thermodynamic 
equilibrium distribution. Boundary conditions determine possibly different 
phases in the thermodynamic limit. The system is said to be ferromagnetic if 
J(y) >~ 0 for all y. 

The case of the noninteracting (usual) percolation model is recovered 
from this one by setting J(y) = 0 for all y and identifying positive spins with 
occupied sites, whose concentration is then p = e+~h/(e -#h q- e+#h). 

For a given configuration, one may look for sets of plus spins which are 
connected through the bonds of the lattice. Maximal such sets will be called 
clusters. Hence a cluster is a set of occupied points connected through the 
bonds of the lattice and completely isolated by empty sites. 

L e t  us now consider the event " the origin belongs to an infinite 
cluster" and denote its probability by Poo. When P+ > 0, we say that percola- 
tion occurs. It is well known that when the sites are occupied independently 
with probability p, then percolation occurs for p > Pc for some 0 < Pc < 1, 
and not below. Percolation also occurs in the interacting problems; in particu- 
lar for any integrable potential and any given temperature it appears at 
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sufficiently large magnetic field. For the Ising ferromagnet at h = 0, 
percolation occurs in the plus phase whenever spontaneous magnetization 
exists. In fact, for the two-dimensional case the phase transition coincides 
with the appearance of an infinite cluster. (r Percolation also exists for 
lsing models for any positive magnetic field when p > tic. (v) 

Let us denote by P, the probability that the origin of  the lattice belongs 
to a cluster of  exactly n sites. P,  is the cluster size distribution function. One 
of the interesting problems arising in percolation theory is to determine the 
behavior of the cluster distribution function P, with n. It is easy to see that 
P, < e x p ( - z n )  for some Z > 0 at small concentration p in the independent 
case, and in the interacting case at large negative magnetic field. As a 
matter of  fact, P, decays exponentially for any p, except Pc, in the percolation 
model on a Bethe tree, as is well known from a work by Fisher and Essam/8) 
An interesting question was then whether this exponential decay is always 
true outside the percolation thresholds. 

1.3. O u r  Resul ts  and Previous W o r k  

In contrast to the exponential decay at low concentrations, Stauffer (9) 
proposed in 1976, on the basis of an analysis of numerical studies, that 
p , > e x p ( _ ~ n ( d  1)/d), i.e., not exponentially, for P > P c  in the two- 
dimensional (d = 2) independent case. Flamang (1~ found this behavior in 
three dimensions. For  the interacting case, Binder (ll) argued and obtained 
numerical evidence for such a behavior in the low-temperature Ising model. 
For a very recent systematic numerical study of P,, we refer to Ref. 12. 

From the mathematical point of view, it was proved by Kunz 
and Souillard ~3) that the moments ([cl k) = ~,. nkp, of the cluster size dis- 
tribution satisfy ([cl k) >~ [ k . d / ( d -  1)]! for any p >Pc, and that this in- 
equality holds also for any ferromagnetic system in the whole percolative 
region. If  P, behaves as exp(-zn~),  then this implies that ~ <~ (d - 1)/d, i.e., 
the stronger inequality P,  > e x p ( - z n  (d- 1)/d). 

Such a stronger statement was in fact derived in Ref. 13 in the case of 
the usual (noninteracting) percolation at sufficiently high concentration, but 
not in the whole percolative region. Upper bounds were also obtained there 
for p large enough, that is 

e x p ( -  an (a- 1)/d) < p.  < exp( -- c(n (d- a)/a) 

Finally, analogous upper and lower bounds were recently proved by 
Delyon (~4) for the case of the ferromagnetic d-dimensional Ising model in the 
positively magnetized phase at low temperature and at any temperature in a 
sufficiently high magnetic field. Such a behavior of  the clusters of plus spins 
was also proved there in the minus phase at zero magnetic field and low 
temperature, which is a trace of  nucleation at phase transition points. 
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The main result in this paper implies for the systems described above 
with a potential satisfying 

lYl IJ(y)l < 
y ~ Z  ~ 

(and so in particular for independent percolation) that in the whole 
percolative region 

Pn > e x p ( -  Z n(~- 1)/~) 

Furthermore, such a bound also holds if there is no percolation but if 
percolation appears in some other phase, i.e., some other equilibrium state 
constructed with different boundary conditions. 

Let us mention that one can prove a similar upper bound Pn < 
exp(_)(n(d-1t/d) in the large magnetic field region by extending easily the 
proof for the upper bound of Refs. 13 and 14. 

Our results extend easily to other graphs as sketched in Ref. 13, and in 
particular to systems on the triangular and Kagom~ lattices. In fact one only 
needs the existence of shapes whose volume grows faster than their 
surface, and the exponent of n represents the typical volume to surface 
scaling power. 

2. THE RESULTS A N D  THE IDEA OF THE PROOF 

In the previous section, we have introduced the collection of lattice spin 
variables. We denote by 

n = { - 1 ,  +1} ~" 

the space of all configurations a of spins on the lattice Z d. For subsets 
A c 7J, f~A will denote the set of all spin configurations cr A in A. 

We shall consider probability measures/~ on f2, which give the distribu- 
tion of the spin configurations a, and refer to # as the state of the system. 
Probabilities of sets B ~ f~ and expectation values of functions f will be 
denoted by /~(B) and g( f ) .  The states we shall consider correspond to 
thermodynamic equilibrium states for interactions which in finite volumes 
A ~ Z e are described by 

HA(a)= Z JA 1~ % -~ h Z a,, + ~ J, H % (2.1) 
A c z ~  '~ x E A  x ~ A  A ~ .  a v ~ A  

A c~A=~ ~ IA[~>2 
A r ~ A g - 0  

with some translation-invariant couplings JA which include the one-body 
term, i.e., the magnetic field, h - JIx}. 
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For such interactions we introduce the norms 

[JJN = 2 [JA[I = fih + fl ~ IJ(Y)I in physical no ta t ion]  
A~0 L y J 

"J']l) = ~ 'JA' Diam A I =- [3h +[3 Z [Y['J(Y)'P 
A~O [_ y A 

where Diam A is the diameter of  the set A. 
The probability distributions p we consider are Gibbs states associated 

with a given interaction and are defined by the Dobrushin-Lanford-Ruel le  
equilibrium equations,"  5) which state that, in any finite region A ~ ya, the 
conditional probabili ty distribution of cra given on external configuration 
~/A~ is 

exp[ -- HA(crAtlAO]/norm (2.2) 

where the temperature has been included in J. 
The noninteracting distributions which are used for the standard site 

percolation problems are recovered by setting JA = 0 whenever tA[ > 1. 
Our main results are: 

T h e o r e m  1. Let g be a translation-invariant equilibrium (Gibbs) state 
for an interaction J with ]lJII D < oo. Then 

Po~(P) > 0 ~ P,(#) > a e x p ( - c n  ~a- x)/a) (2.3) 

with c = 8"32a(1 + 9d]rJ]lD)/Poo 2 and some a = a(Poo, d) > O. 

Theorem 2. Let # be a translation-invariant equilibrium (Gibbs) state 
for an interaction J with [[JPlz) < oo. Then 

Poo(#) > 0 ~ P,(p') > a e x p ( - c ' n  (a- 1)/a) (2.4) 

with c' = 8.32a(2 + 9dFJJflD)/Poo 2 and some a = a(Poo, d) > 0, for any 
Gibbs state p', not necessarily translation invariant, that corresponds to the 
same interaction. 

R e m a r k s .  1. The first theorem applies in particular to the usual 
percolation model for any p > Pc, and to the translation-invariant states of  
the Ising model whenever there is percolation. The second result yields, for 
example, the lower bound on P, for low-temperature ferromagnets in the 
minus phase, where, however, plus spins do not percolate. It also yields the 
lower bounds for the non-translation-invariant states of  the low-temperature, 
three-dimensional Ising model. 

2. The explicit values for c are mentioned because of their generality; 
however, they do not yield the right behavior when Po~ goes to zero. In 
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fact our lower bounds are obtained using clusters whose external boundary 
is rather regular. They give the correct qualitative behavior of P, with n. 
However, when P~ goes to zero, clusters with an "ill-shaped" boundary 
become proportionally dominant, a phenomenon which we do not control 
here. 

3. Another result of interest, which follows along the ideas of Ref. 13, 
using Lemma 4, yields constraints on the cluster size distribution: it says 
that for any Gibbs state # corresponding to a potential J, I[JI[D < oo, 
one has 

~> ~ H P(egi) exp -c~ ]0ecgib (2.5) 
/"/~i cg~, I%1 = m~ i 

where the summation runs over all possible shapes of clusters of m i sites, 
and I~e(~)il denotes the length of the external boundary. In the case of inde- 
pendent percolation (13) or the ferromagnetic Ising model (14) one can prove 
a stronger result with c~ = 0, i.e., 

P, + m P, Pm 
/> (2.6) 

n + m  n m 

A weaker form of (2.5), Lemma 5, is used in the proof  of Theorem 1. The 
constant c can perhaps be improved by a more complete partial summation 
over regular volumes in (2.5). 

4. In the case when the interaction satisfies only liJJ[ < ~ and not 
[IJl[D < oo, we can still prove the analogs of Theorems 1 and 2, but where 
the lower bounds hold only for a subsequence of values of n which do not 
grow faster than geometrically. 

5. Occasionally, the interactions (2.1) are given in terms of the "lattice 
gas" variables n A = [ I x ~ ( 1  + a=)/2. The same results hold if the 
analogous ]b' lid is finite. 

The Idea of  t h e  Proof  

The reason for the particular power ( d -  l)/d which appears in (2.3) 
may be seen by the following argument, which also yields the basic idea of 
the proof. When percolation occurs, then each point has the positive proba- 
bility P~ of being connected to infinity by a path of plus spins. Therefore 
in any specified cube, the average fraction of the spins that are connected 
to the boundary is at least P~. It follows that the probability that a fraction 
of the spins larger than P~/2 is connected to the boundary does not de- 
crease to zero when the cube's size goes to infinity (in fact, it stays larger 
than P~/2). For such configurations in the cube, it takes only a fluctuation 
of spins on the boundary, e.g., a formation of an outer layer of minus spins 
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and an inner layer of plus spins, to form a cluster whose volume is neither 
more than the cube's volume nor less than the fraction Pool2 of it. Since the 
above behavior of  the spins inside the cube occurs spontaneously, the proba- 
bility of such an event decays exponentially only with the cube's surface, while 
it provides a lower bound for the probability of having a cluster whose size 
is of the order of the volume. Thus (d - 1)/d appears as the minimal power for 
the given lattice by which the volume of a region has to be scaled to 
obtain the region's surface. 

The proof  of Theorem 1 is given in the following two steps: 
(a) (Section 3). We show that for a sequence of values of n with an 

approximate geometrical progression, the lower bound (2.3) is already satis- 
fied if one counts only clusters of cubic external boundary. This is done 
using the above idea, which, however, does not give the exact values of n 
for this sequence. 

(b) (Section 4). Inequality (2.3) is proved for any n by using clusters 
with cubic external boundary, of sizes in the above-mentioned sequence, to 
build clusters of arbitrary size. It is important here to have an efficient method 
of construction, in which finite fractions of  the volume and the external 
surface belong to the largest cluster. 

Theorem 2 is a consequence of the previous analysis together with the 
fact that if several phases (Gibbs states) exist for a given interaction, that is, 
a given magnetic field, temperature, and potential, then it takes only surface 
energy to change the phase in some volume. 

The general idea described above evolved from the basic work of Ref. 13, 
where it was discovered that when percolation occurs, clusters get an effective 
volume. However, the method used there did not yield the existence of a 
good sequence of  n's in the whole percolative region even for the non- 
interacting case. The idea of using an almost geometric sequence to con- 
struct large clusters in an "efficient" way also appeared there and was used to 
get lower bounds on P, for all n from those of a subsequence through the 
surmultiplicativity property (2.6). This yielded an alternative proof  of  step b 
for the case of independent spins and for the Ising model. (1a'14) 

3. L O W E R  B O U N D  FOR A S U B S E Q U E N C E  

Let us introduce the standard cubes A k = [0, k - 1] a. Given a region A, 
we denote by c~A, c~A, and 0(A) its outer boundary, inner boundary, and 
interior, which for the cubes are 

OAk = [-- 1, k]d\Ak, 0(Ak) = [1, k - 2] a, C~Ak = Ak\O(Ak) (3.1) 

Consider the following events and the sets of configurations which 
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represent them : 

Gk ~ = {a ~ f}[the number of plus spins in 0(Ak) connected to 
6A k is larger than or equal to 210(Ak)q} 

Fk + = { a ~ f l l a  x - - + l  for all 6Ak} X 

We have: 

L e m m a  1. Let /~ be a translation-invariant equilibrium state for an 
interaction J, with ]lJII < 00. Then for any k 

/~(G P~/'2) > P+/2 (3.2) 
Proof. Let 

1 
)A - 10(A)l x~<A) Zx:+ 

where Zx ~ is the characteristic function of the event "the site x is con- 
nected to infinity," and for a finite set A, ]A[ denotes the number of its 
points. For each configuration, fa counts the fraction of the points in 0(A) 
that belong to an infinite cluster of plus spins. Now 

= /~(fA) ~< n~o/2 + ~ fA(a) l~(da) Poo (3.3) 
3~ G E ~U^(~r) > P= ,'2} 

P~/2 + #({a + ~]JA(a) >t P~/2}) (3.4) 

since / 4 f )  denotes the average value o f f  and where use has been made of 
fA ~< 1 in the second inequality. Therefore 

/,(G~ '=/=) > #({a + f}lfA(a) > P+/2}) ~> P~o/2 (3.5) 

where the first inequality expresses that there is a larger or equal number 
of points connected to the boundary 6A k than to infinity. �9 

k e m m a  2. Let ~t be a translation-invariant equilibrium state for an 
interaction J with ]lJl[ < oo. Then for any k 

tx(Gf =/2 n F~ +) >~ �89 exp(-gl l6Ak]  ) (3.6) 

with K 1 = In 2 + 2iLJH. 

Proof. Since 

/~(G~ :/2 c~ F k +) P /2 + P '2 = kt(Gk ~ )tt(F~ Gk ~' ) (3.7) 

where tt(AIB) denotes the conditional probability of A given B, the claim of 
the lemma is a consequence of Lemma 1 and the bound 

tt(Fk+lG~ ~/=) >~ e x p [ - ( l n  2 + 2ilJI])lbAkl] (3.8) 
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Inequal i ty  (3.8) is physically intuitive and follows directly through usual 
es t imat ions once one realizes that  the condi t ional  expectat ion of  F is a 
certain average of  the expectat ions of  F given specified condit ions in 
2"\6Ak. [] 

Let us now introduce for  integers k, n the event 

Rk, . = Fk + c~ {o ~ f)[the set o f  plus sites in A k connected to 
6A k has exactly n points} 

Then we have the following result:  

k e m m a  3. Let /~ be a t rans la t ion- invar iant  equil ibrium state for an 
interact ion J with JrJrl < oc. Then there exist sequences k(i), n(i), i = 1, 2 ..... 
such that 

(a) 2 "-1 <~ n(i + 1)In(i) < 3dips,  n(1) = 1 (3.9) 

(b) n(i) >>, k(i)"Poo/2 (3.10) 

(c) iJ( Rk(i),n(i)) >~ bn(i)- ~ e x p [ - K 2 n ( i )  ("- ll/d] (3.11) 

with b = (P~/2)2(1 - P~/2) 1 and 

K 2 = (ln 2 + 2flJrl)(R/Poo) (d- ~)/d (3.12) 

ProoL By definition, the set o f  configurat ions 

G P ~ / 2  + 
k ~ F k  

is conta ined in the following disjoint union:  

a~ ~,'2 c~ F k + ~ ~) Rk," (3.13) 
k~P~/2 ~< n ~ k a 

Hence 
/~(G~ ~/2 ~ Fk +) <~ ~ /t(Rk,n) (3.14) 

kdP~/2 <. n <~ k d 

which implies that  for any given k there exists, in the interval [p~kd/2, k"], 
at least one integer m(k) for which 

~(Rk,m(k) ) >~ (1 - -  Po~/2)  - ~ k -  dt . t(a~ ~/'2 n Fk + ) (3.15) 

L e m m a  2 therefore ensures that  

#(Rk,m(k) ) >~ (P~/2)(1 -- P~/2 ) -  ~k-" exp( - K~k d- 2) (3.16) 

~> (P~/2)2(1 - P~/2 ) -  ~m(k)- l 

x exp [ -- K 1 (2/P~)("- 1)/am(k)("- 1)/,] (3.17) 

using in the last step that  p~kd/2 <~ m(k). Statements  (3.11) and (3.12) will 
follow f rom these estimates.  
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Finally one constructs the subsequence n(i) satisfying (3.9) by induction 
starting from n(1) = 1 : knowing n(i), we choose n(i + 1) as the integer re(k) in 
the interval [ P ~ U / 2 ,  k d] which satisfies (3.17), k being the smallest integer 
larger than or equal to [2dn(i)/Po~] TM. II 

Remark 1. Consider the event 

F k- = { a ~ l a ~ = - i  for all x~0Ak} 

Then the set Rk, ~ ~ F k corresponds to the event " there is a cluster of plus 
spins of exactly n sites whose boundary is the boundary of the cube." 
It is clear that 

P. >~ IZ(Rk,, ~ Fk- )  (3.18) 

However, simple estimates as in Lemma 2 ensure that 

It(Rk, . c~ Fk-  ) -- 12(Rk,,)l~(Fk-IRk,,) >>, /~(Rk,,) exp(-K~]0Ak[) (3.19) 

Inequalities (3.18), (3.19) together with Lemma 3 imply then a lower 
bound of the expected form for a,subsequence of values of n which has an 
approximate geometrical progression. 

Remark 2. Up to this point we have only used that P~ > 0 and 
tlJil < o0. In the next section IIJIID will be used. 

4. P R O O F  OF T H E  L O W E R  B O U N D  FOR ALL n 

We shall now use the subsequence constructed in Lemma 3 to build up 
clusters of arbitrary size, but before that we need a technical lemma which 
tells us how much a distribution in a cube depends on the outside. 

kemma 4. Let #1 and ~2 be the Gibbs distributions in a box A for 
a given interaction J, with ]1J II D < ct3, and given external spin configurations 
r/~), r/h 3). Then for any function f ~ 0 of the spin configuration in A 

bq(f)  ~>/~2(f) e x p ( -  K~[OA[) (4.1) 

where K 3 = 4LIJLID. 

ProoL First let us note the following bound on the interaction energy 
across the boundary of a box, A and A c denoting, respectively, the box 
and its exterior: 

IJAI ~< ~, ~ ~ IJAI ~ ]iJilDIOA[ (4.2) 
A ~ Z a : A c ~ A g - ~ J  I x ~ A  A c ~ a  

A c~ A~ r ~ d(x ,  OA) <~ l D i a m  A = t 
A ~ x  

The estimate of the lemma then follows with the use of (4.2) from the 
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explicit relation 

]'/1 ( J ' )  = ~2(J '(0-A) exp[HA(O'At/tA 2)) --  HA(O'AF/(A 1)3 

x {/~2(exp[/!a(crat/(A{) ) -- HA(aA~/(A~,-))]} - '  (4.3) 

which is a consequence of (2.2). [] 

Before going on to the proof  of  Theorems 1 and 2, we still need a 
technical lemma: 

k e m m a  5. Let n(i) be the sequence constructed in Lemma 3 for a given 
interaction J. Then any integer n can be written as 

Z 
1 ~ i < ~ i ~  

n = ~ wln(i) (4.4) 
1 <<.i<~im~x 

where /max depends on n, and 

0 <<. w i <~ 3a/P~ (4.5) 
Furthermore,  

win(i)(d- 1)id ~< K4n(d-1)ld (4.6) 
l<~i<~i .... 

with K~ = 4.3d/Poo. 

P r o o L  The property (4.4) is readily proved by repeatedly subtracting the 
maximal possible element of  the sequence n(i) from the remainder, starting 
with n. The bound (4.5) on the weights w i follows from the property (3.9) of  
the sequence n(i). Inequality (4.6) holds, since 

w ln( i )(a - l )l d 

r id+i /  j 
3 d 3 d 

~< _ _  n~e- 1)l~ ~ 2 - J ( a -  1)2/e ~< 4 - -  n (e 1)/e (4 .7 )  
P~ j ) 0  Poo 

and we have used that d ~> 2 for our value of K 4. [] 

We shall now use the decomposition (4.4), n = Y~i w : ( i ) ,  to select for 
each n a collection of wi cubes of  sides k( i ) ,  where k( i )  is the sequence 
associated, by Lemma 3, to n(i). There obviously is a systematic way of  
arranging the cubes so that (a) they are all disjoint, (b) the origin is a corner 
of  one of them (say one of the largest), and (c) each cube is connected to the 
previous and consecutive ones by opposite corners (see Fig. 1). Let E, be the 
event: " in  each of the cubes thus placed, a x = + 1 for all x on the inner 
boundary, and the number of  plus spins inside each such cube of side k( i )  
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t -  § 

~- § 

i ~ 

the origin 
Fig. 1 

that  are connected to the boundary  is exactly n(i)." Then we have: 

k e m m a  6. Let # be a t ransla t ion- invar iant  state for an interact ion J 
with IIJIi o < oo. Then 

/4E.)  > a exp( - K s #  a- ll,,a) (4.8) 

for some a =a(Poo, d) and Ks = 8(1 + 211J]l + 8dLIJHD)(3d/P<)), 

ProoL It follows f rom Lemmas  3 and 4 that  

lz(E,) >~ [I  {bn(i)- i  expE_K2n(i)~e-l)/e _ 2dK3k(i)d-1]},~, (4.9) 
1 ~i<~ima• 

and using (3.10) and (4.6), we get 

bt(E,) ~> a e x p { - K ~ [ K 2  + e + 2dKa(2/Poo)~e-t)/e]# e- 1),J} 

w i t h e =  1 - 1 n 2 a n d  

a = inf  ~ [71 [bn(i)'-teEn~i)]w' II+il 
{,,,},J ~1 <~i<~j 

= a(P~,  d) > O �9 

(4.1 O) 

3d/P~, n( i ) - -sa t i s fy ing (3.9) 1 

(4.Jl) 

Proof  of  T h e o r e m  1 

Let us denote  by 17, the volume constructed above by piling up cubes 
of  appropr ia te  size and ~ V, the set o f  spins on its external boundary .  Let us 
also denote  by B , -  the event "cr x = - 1 for  x ~ t3 V.." 
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The event E. ~ B. -  realizes clusters containing the origin and of exactly 
n plus spins. Hence it is clear that 

P,(/z) ~>/z(E,, n B , - )  (4.12) 
But 

I~(E, ~ B, ) = #(E,) I~(B,- IE, )  (4.13) 

and by the same estimate as in (3.8) 

#(B. IE.) > e x p [ - ( l n  2 + 2]lYrl)l~?V.I] (4.14) 

On the other hand we have 

laGJ ~ I ]  wi[k(i)  + 2] a-~ (4.15) 
1 ~< i~< imax 

Theorem i follows now from Lemma 6 and from (4.12)-(4.15), using (3.10), 
n(i) ~ k( i )dP~/2,  and (4.6). [] 

We shall now proceed to prove Theorem 2. It relies on the fact that 
if several phases coexist for a given interaction, that is, given magnetic field, 
temperature, and potential, then it takes only surface energy to change the 
phase in some volume. 

Proof  of  T h e o r e m  2 

Let/~ and kt' be as in Theorem 2. Integrating (4.1) over the boundary 
conditions in the states/~ and / s  shows that 

~'(E, ~ B , - )  ~>/~(E, c~ B , - )  exp{ - K 4 1 ~ [ V  n L) ~Vn][} (4.16) 

where ~[V, w 0V,] denotes the external boundary of the set V, w 0V,. 
Theorem 2 follows now using (4.12), which is also valid for #', and our 
previous bounds on #(E, c~ B,,-), [] 
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